Antenna Analyzers

What are they and what are they good for?

W7EFL

Parts of Analyzer

- RF signal generator with variable frequency
 - You need to be able to inject RF in the antenna to measure electrical characteristics
 - Low-power transmitter (yes, it does make some RFI)
- RF detector
 - Need to be able to detect the RF injected
 - Essentially a receiver
- Measurement circuit
 - Meter, graphic display, etc.
 - Some instruments have memory and other computation/display functions

Antenna measurement

- Antenna resonance
- Antenna impedance (some, but not all instruments give direct ±jX measurements)
- You can take the instrument to the antenna feed point to avoid transmission line loss interfering with measurement.
- Some instruments can cancel out the feedline to virtually place the instrument at the antenna feed point

SWR measurement

- Most analyzers give a direct measurement of SWR.
- You don't need to measure forward power, reflected power, and plug in the numbers.
- Line loss can mask SWR because the reflected power is dissipated in the line as well as the forward (incident) power.
- It is easier to read SWR off the analyzer meter than to calculate it.
- You don't need to use high-power and contribute to RFI.
- You can measure SWR outside of the ham band (helpful when trimming an antenna to length)
- Some instruments are capable of SWR measurement at other than 50Ω so be sure you are using the correct Z_0 impedance setting.

What is SWR?

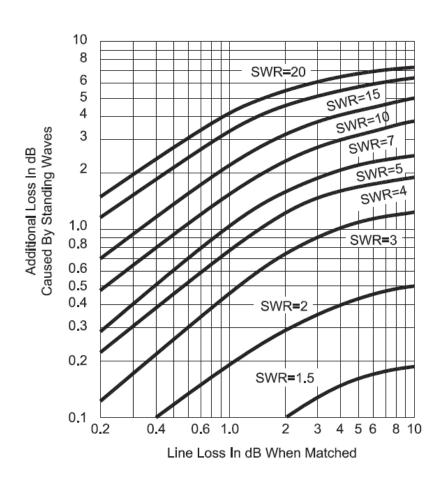
- SWR is an abbreviation for standing wave ratio.
- You may also see VSWR or iSWR, indicating voltage or current respectively.
- Standing waves occur when a waveform hits a discontinuity in the transmission line and a portion of the power is reflected.
 - Discontinuity a change in impedance.
 - A coaxial cable with a characteristic impedance (Z_0) of 50 Ω connected to an antenna with a resistance of 100 Ω will result in reflected power and SWR. In this case the SWR is 2:1.
- Maximum power transfer occurs when the source impedance is equal to the complex conjugate of the load impedance.

Reflection coefficient and SWR calculation

- The reflection coefficient is frequently represented by Γ (gamma), where $\Gamma = V_R/V_F$ or $\Gamma = (Z_L Z_0) / (Z_L + Z_0)$. Bold font indicates phasor or complex value.
- Γ takes into account any complex components, however only the magnitude is required to calculate SWR. The magnitude of the reflection constant is represented by ρ (rho). $\rho = |\Gamma|$
- If you have a directional wattmeter, you can determine ρ from the forward and reverse power measurement while transmitting.
- $\rho = V(P_R/P_F)$
- SWR = $(1+\rho)/(1-\rho)$
- Since SWR = $(1+\rho)/(1-\rho)$, if $\rho = 0$, SWR = 1:1. 1:1 is perfect.
- As ρ approaches 1, the SWR approaches ∞.

Standing waves—an example.

- Take the example of a (lossless) coaxial cable with a characteristic impedance (Z_0) of 50 Ω connected to an antenna with a resistance of 100 Ω and push 50 watts into it. $P = V^2/Z_0$ so V = 50 V.
- For a 2:1 VSWR to exist, there must be a reflected voltage V_R that adds to and subtracts from 50 V to result in a ratio of 2:1.
- V_R turns out to be 16.66 V to create a maximum V of 66.66 V and a minimum of 33.33 V.
- Reflected power is $P_R = 16.66^2/50 \Omega = 5.6$ watts.
- With SWR of 2:1, about 11% of the incident power is reflected.


Summary of SWR example

- Transmitter sends 50 W incident power down a 50 Ω line terminated in a 100 Ω antenna.
- A reflected wave of 16.66 V RMS is sent back towards the transmitter.
- At points spaced $\lambda/2$ along the line, V_R adds to the forward 50 V resulting in 66.66 V maxima along the line.
- At points displaced $\lambda/4$ from the maxima along the line, V_R subtracts from the forward 50 V resulting in 33.33 V minima along the line.
- SWR is simply the ratio of maximum to minimum values in the standing wave.
- Power reflected is 5.6 W.
- Power delivered to the antenna is 44.4 W.

Why you should be (somewhat) concerned about high SWR

- High SWR results in reduced efficiency.
- High SWR results in increased loss in transmission line.
- Your transmitter or amplifier may not "like" operating into a high SWR.
 - An antenna tuner can make the transmitter happy.
 - An antenna tuner is actually an impedance matching circuit, it does not "tune" an antenna!
 - The most effective location for an impedance matching circuit is at the location of the discontinuity.
- High SWR increases voltage stress on feedline dielectric.

Additional feedline loss due to SWR

How high is "high" SWR?

- While 1:1 is definitely low SWR, defining high SWR is more difficult and it depends. . . .
 - What can your transmitter or amplifier tolerate?
 - If you are using an antenna tuner, how much mismatch can it compensate for?
 - How much additional loss are you willing to tolerate in your feedline?
- Generalizations (always risky to make).
 - 2:1 is pretty good.
 - Most tuners can match 3:1.
 - Frequently SWR of 6:1 is not a real problem.

Transmission line measurements

Electrical length

• Since open-ended transmission lines have zero reactance (X) at lengths that are odd multiples of $\lambda/4$, it is a simple matter to determine the frequency that corresponds to $\lambda/4$.

Velocity factor

- Velocity factor (VF) is easily determined once you can determine electrical length.
- VF is needed if you are going to make phasing harnesses or impedance matching stubs.

Physical length

- A tape measure is usually easier.
- Fault (short or open) location

Features

- The things that were important to <u>me</u> were:
- Must have
 - Coverage through 440 MHz
 - Good graphic display
 - Automatic frequency sweep
- Good to have
 - Computer interface
 - Smith chart

Three popular analyzers

- MFJ 269c
- Comet CAA-500 MkII
- RigExpert AA-600

MFJ-269c

• Pro

- Popular—many users
- Good basic function
- Analog meters
- External power
- \$400 price point

• Con

- Very touchy frequency adjustment
- No automatic sweep
- No memory/computer interface

Comet CAA-500 MkII

Pros

- Large analog meter
- Digital readout
- Bar graph
- Auto sweep function
- External power
- \$400 price point

Cons

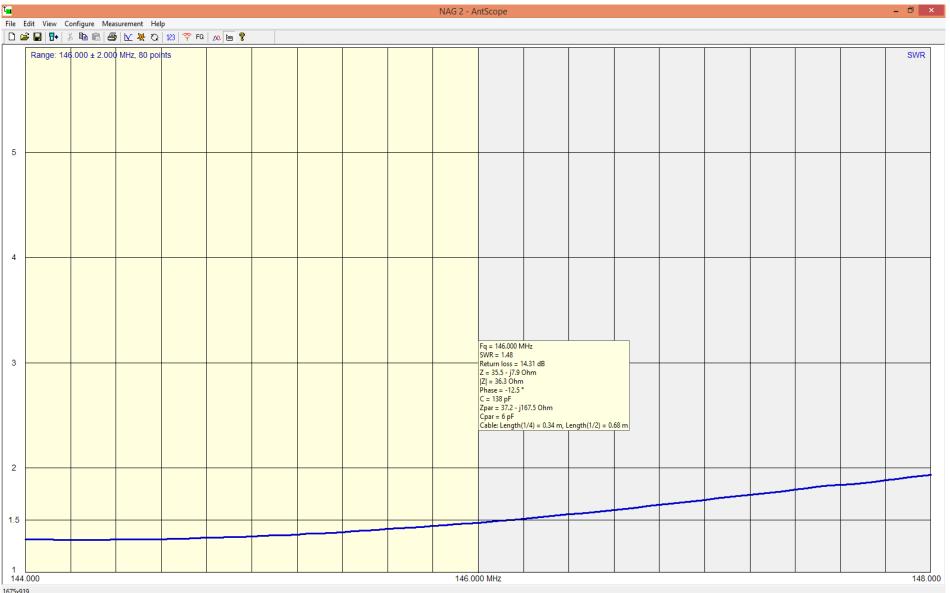
- No computer interface
- Separate N-connector for UHF (I am sure to have the antenna on the wrong connector)

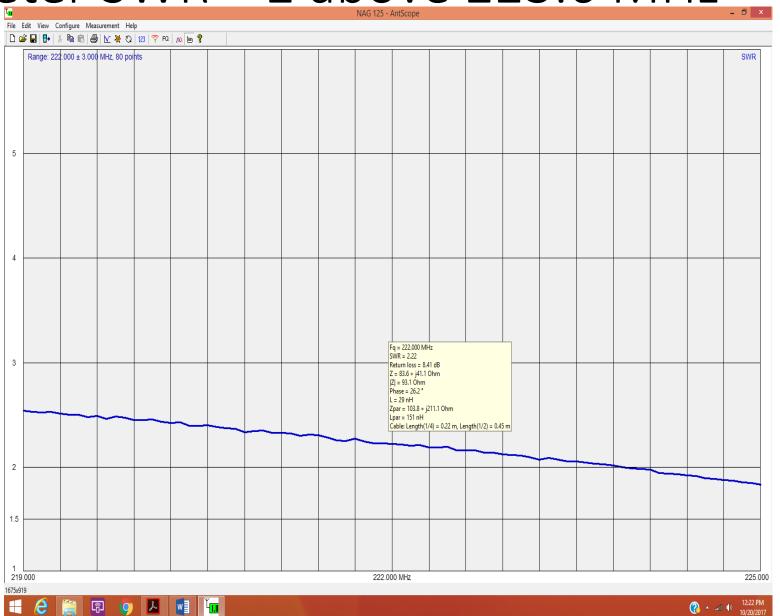
RigExpert AA-600

- Pros
 - Good computer interface
 - Supports Smith Chart (extra cost in US)
 - Only one RF input (N-type)

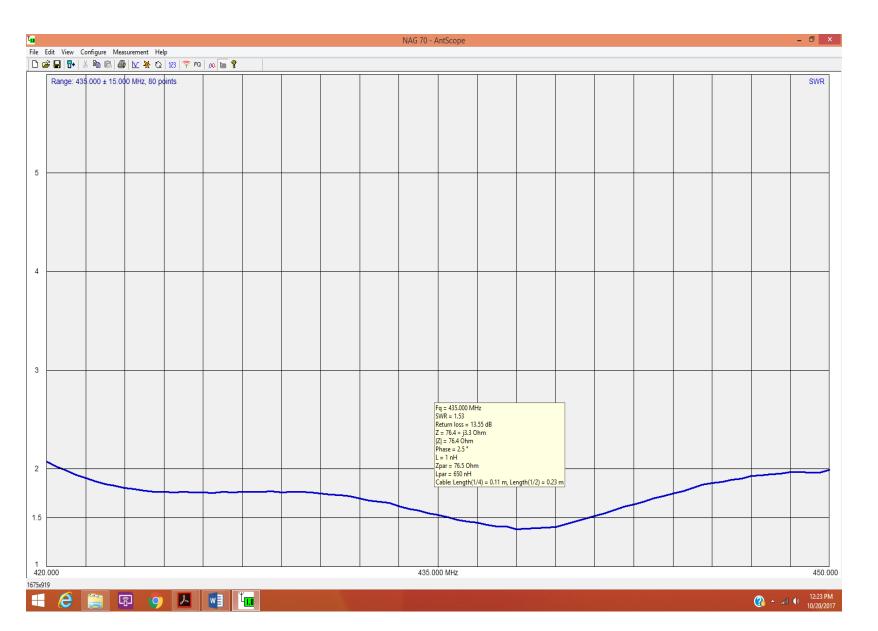
Cons

- No analog meter
- Price point \$600
- Need to remove batteries to charge them
- Battery charger


A good selection of adapters is a must


Example of SWR measurement

- Sweeping the band shows the SWR of an antenna over the frequency range.
- You can determine if a manufacturer is "stretching the truth" with their SWR claims or if a particular example does not measure up.
- The example that follows is a tri-band mobile (2m, 1.25m, and 0.7m) Nagoya antenna.


2 meter SWR <2 over entire band

1.25 meter SWR < 2 above 223.6 MHz

70 cm SWR <2 over most of band

Transmission line Velocity Factor (VF) measurement

- The following example is a 90" (2.29 meter) long piece of RG-58U.
- VF is not known—the dielectric may be foam or XLPE.
- Procedure:
 - Determine the frequency for one wavelength (λ) of the physical cable length.
 - Ensure that the lowest frequency odd multiple $\lambda/4$ is included in the sweep.
 - Look for zero values of X to find the $\lambda/4$, $3\lambda/4$, $5\lambda/4$, etc. frequencies.
 - This will give you the electrical length for $\lambda/4$.
 - Calculate the velocity in cable $V = F\lambda$.
 - Ratio the velocity in cable to the free-space velocity to determine the VF.

VF Example

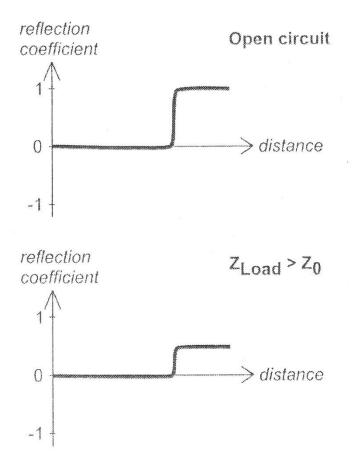
- (2.29 meters)(4) = 9.1 meters.
- 300E6 meters/sec ÷ 9.1 meters/cycle = 32.8E6 cycles/second
- We find the first crossing point frequency (F) of 21.25 MHz
- Calculate the velocity from the frequency and length: (21.25E6 cycles/second)(9.1 meters/cycle) = 193.3E6 meters/sec
- VF = 193.3E6 m/sec \div 300E6 m/sec = 0.645 \approx 65%
- Yes, you could simply divide the measured frequency of 21.25 MHz by the free-space frequency of 32.8 MHz and come up with the answer.
 I did it the long way to show correlation with the definition of VF.

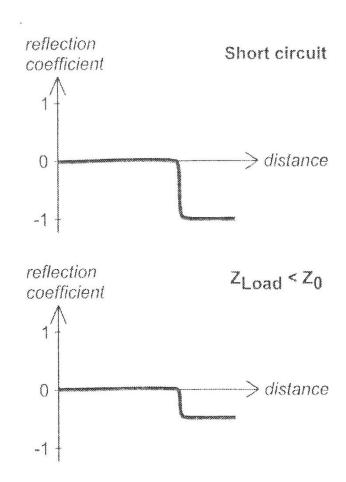
Use of VF

- Now that we know the VF, we can use physical length to determine a given electrical length.
- Example: how long would a quarter-wave piece of this cable be at 146 MHz?
- $\lambda = 300/146 = 2.055$ m (free-space)
- $\lambda/4 = 2.055/4 = 0.514$ m (free-space)
- $\lambda/4 = (0.514 \text{ m})(0.645) = 0.332 \text{ m} \text{ (cable)}$
- (0.332 m)(3.28 ft/m)(12 inches/ft) = 13.07 inches
- Close enough to 13-1/16" on my tape measure

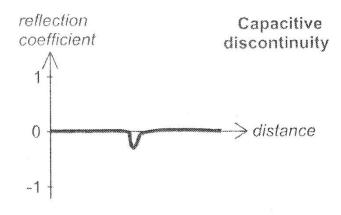
Cable length

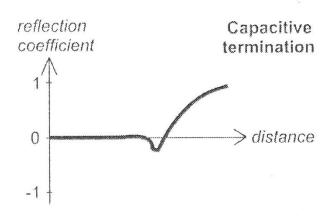
- Even though the various manufacturers of analyzers tout the ability to "measure" physical cable length, I think it is easier to measure physically.
- Assuming that it cannot be measured physically for some reason proceed as follows:
 - Determine VF of cable
 - Find frequency (F) that corresponds to $\lambda/4$ for length of cable
 - Length in meters = (300E6 meters)(VF)/(4F)

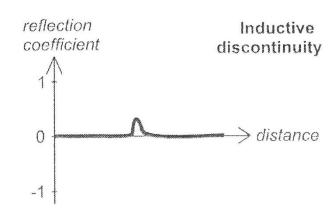

Length example

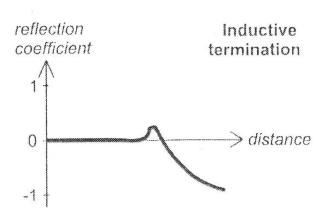

- Using the same measurements as in the previous example:
- F = 21.25 MHz
- Length = (300E6 m/sec)(0.645)/(4)(21.25E6 cycles/second) = 2.28 meters
- This is essentially the same answer that the tape measure gave without the benefit of fancy instruments and calculation.

Time domain reflectometry (TDR)

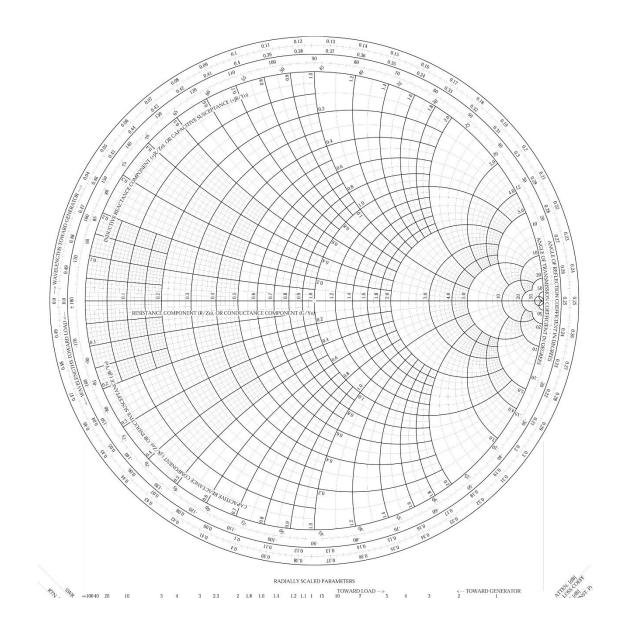

- TDR function can be used to locate cable faults by measuring the time it takes for a signal to be reflected back to the source from a discontinuity.
- The characteristic "signature" of the reflected signal indicates the type of fault.

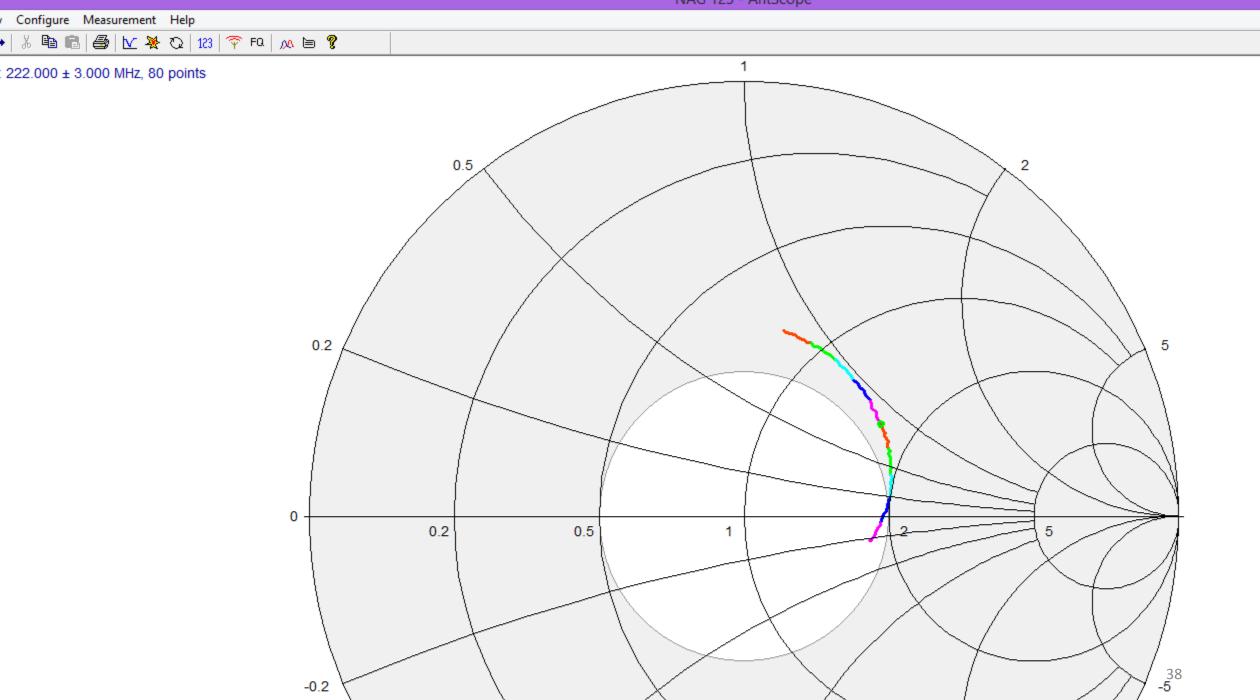

TDR Fault Signatures

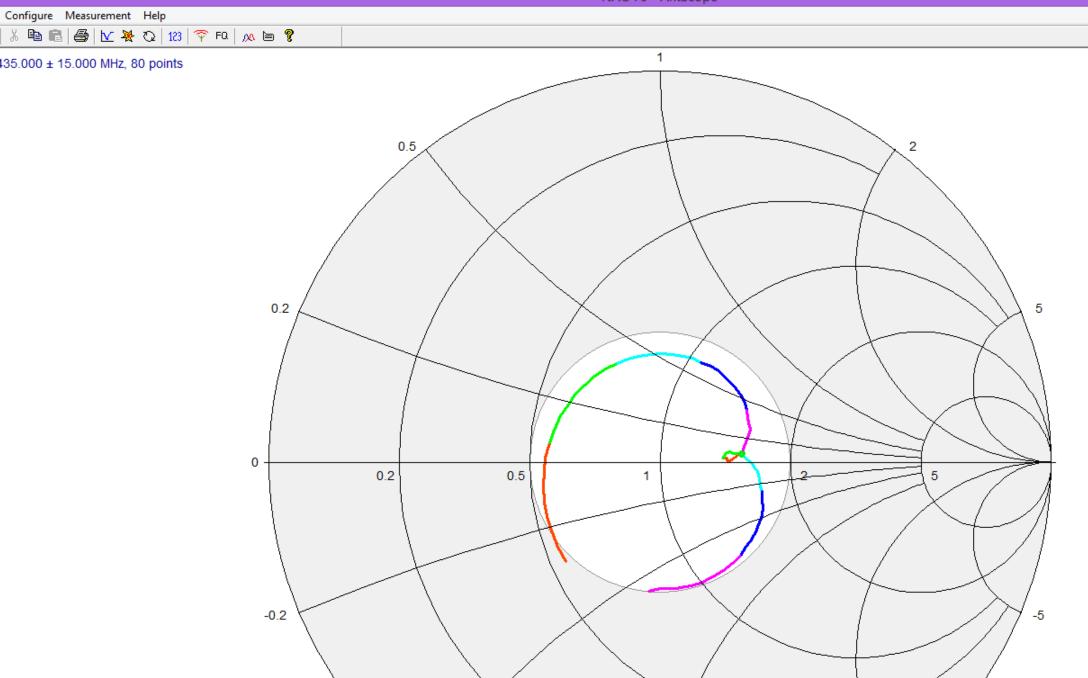




More TDR Fault Signatures




Smith chart

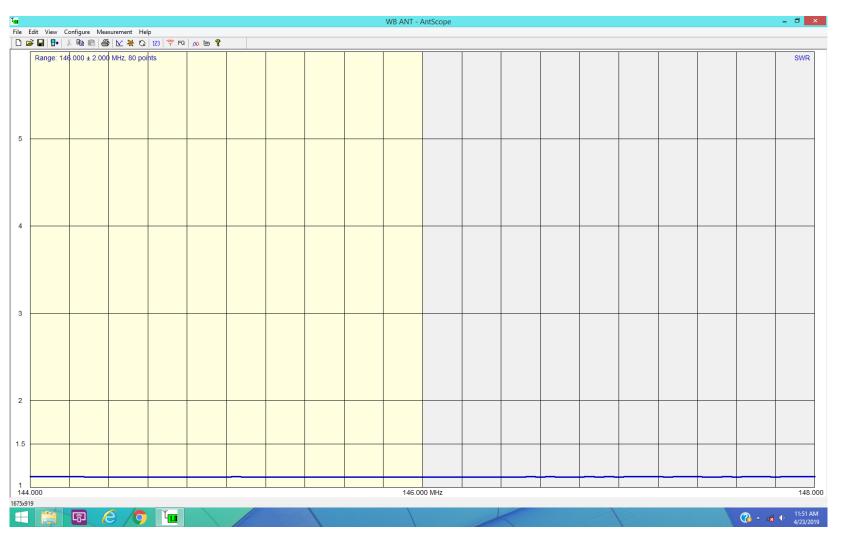

- The Smith chart is a specialized graph that can be used to aid in impedance matching and transmission line calculation.
- Invented by Phillip H. Smith (1905-1987).
- Resistance (or conductance) is plotted on the straight horizontal axis.
- Reactance (or susceptance) is plotted on the circular axes.
- Values of constant SWR form circles concentric with the normalized value of R on the resistance axis (R=1.0).
- Normalization is when we divide measured R and X values by the characteristic transmission line impedance, e.g. 50 Ω .

Properties of Smith chart

- Impedance repeats every $\lambda/2$ —the circumference of the chart is one half wavelength.
- Impedance plotted on chart will have a corresponding admittance diametrically opposite.
- Corresponding impedance and admittance points are separated by a circumferential distance corresponding to $\lambda/4$.
- Constant values of SWR plot as a circle.
- Entire books have been written on the use of Smith charts.
 - P. H. Smith. *Electronic Applications of the Smith Chart.* McGraw-Hill 1969
 - W. N. Caron. Antenna Impedance Matching. ARRL 1989

What an Analyzer Can and Cannot Do

- Antenna analyzers tell you nothing about the radiation pattern of an antenna system.
- Antenna analyzers can help you troubleshoot antenna system problems.
- Antenna analyzers can help you trim an antenna to resonant length.
- Antenna analyzers can quickly determine the SWR of an antenna system over various frequencies which can be a tremendous help in designing and building impedance matching circuits.


SWR Myths

- High SWR causes RFI. It does not.
- High SWR causes radiation from the shield of coax. Nope, but you might want to think about a balun.
- You can change SWR with different length feedline. You can improve impedance match with transmission line *segments* as matching devices, but simply varying the length of the line will not affect SWR (other than by increasing loss).
- If I have SWR of 1:1 (or close to it) my antenna will work great. It may, but low SWR itself is not a guarantee of that.

The quest for 1:1 SWR

- Low SWR is desirable for maximum power transfer between the antenna system and radio (Rx or Tx).
- Low SWR does not guarantee an effective antenna system. It is only one part of the picture.
- An antenna system that is a good radiator and has a relatively high SWR may work better than a system with low SWR that is a poor radiator.
- The following example illustrates an extreme case. . . .

Low SWR, Wide-band Antenna. Near 1:1 SWR over entire 2 meter band!

What this fantastic broadband antenna looks like.

- Obviously, this is not a very good antenna—it's a dummy load.
 - Great SWR
 - Great bandwidth
 - Poor radiation pattern
- Remember SWR is only a part of the picture.

